Data collection and cell refinement: CAD-4 Software (Enraf-Nonius, 1993). Data reduction, structure solution, structure refinement, molecular graphics and preparation of material for publication: NRCVAX (Gabe, Le Page, Charland, Lee & White, 1989).

SF acknowledges the support of a SILO Undergraduate Research Fellowship.

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates and bond distances and angles involving non-H atoms have been deposited with the IUCr (Reference: BK1057). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Chandrasekhar, V., Krishnamurthy, S. S., Murthy, A. R. V., Shaw, R. A. & Woods, M. (1981). *Inorg. Nucl. Chem. Lett.* **17**, 181–185.
- Cordes, A. W., Swepston, P. N., Oakley, R. T., Paddock, N. L. & Ranganathan, T. N. (1981). Can. J. Chem. 59, 2364–2367.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Enraf-Nonius (1993). CAD-4 Software. PC version. Enraf-Nonius, Delft, The Netherlands.
- Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.
- Guerch, G., Graffeuil, M., Labarre, J.-F., Enjalbert, R., Lahana, R. & Sournies, F. (1982). J. Mol. Struct. 95, 237-244.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Thomas, K. R. J., Chandrasekhar, V., Scott, S. R., Hallford, R. & Cordes, A. W. (1993). J. Chem. Soc. Dalton Trans. pp. 2585–2596.

Acta Cryst. (1994). C50, 1978-1980

(+)-*N*-Trichloroacetyl-7,8-dimethoxy-1vinyl-2,3,4,5-tetrahydro-1*H*-3-benzazepine at 153 K

EHMKE POHL AND REGINE HERBST-IRMER

Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany

RALPH SCHIMPF AND LUTZ F. TIETZE

Institut für Organische Chemie, Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany

(Received 22 February 1994; accepted 18 May 1994)

Abstract

The crystal structure analysis of the title compound, $C_{16}H_{18}Cl_3NO_3$, has been carried out at low temperature in order to determine the absolute configuration of the compound.

© 1994 International Union of Crystallography Printed in Great Britain – all rights reserved

Comment

The Pd⁰-catalyzed reaction of aryl or vinyl halides with alkenes, known as the Heck reaction, is an important method of C-C bond formation. A major drawback, however, is the low regioselectivity in constructing tertiary C_{sp3} centres. The Siterminated asymmetric Heck reaction now constitutes a new methodology for the regio- and enantioselective formation of such a centre (Tietze & Schimpf, 1994; Schimpf, 1994). With a catalyst system based on Pd₂(dba)₃ [tris(dibenzylideneacetone)dipalladium(0)] and (S)-BINAP [(S)-2,2'-bis(diphenylphosphino)-1,1'binaphthyl] a mixture of compounds (2a) and (2b) (7) and 72%, respectively) was obtained, the latter in an enantiomeric excess of 64%. Recrystallization of (2b) gave an enantiomerically pure sample, which was converted to (2c) for elucidation of the absolute configuration by X-ray crystallography.

Knowledge of the absolute configuration is required for the explanation of the mechanism of this enantioselective Heck reaction. Comparison of the optical rotation was not feasible because of the lack of reference compounds. All bond lengths and angles are within the expected range and comparable to values found for other 3-benzazepines (Eggleston, 1987; Berger, Chang, Clader, Hou, Chipkin & McPhail, 1989).

Fig. 1. Structure of the compound showing 50% probability displacement ellipsoids. The H atoms are omitted for clarity.

Experimental

Crystal data $C_{16}H_{18}Cl_3NO_3$ $M_r = 378.66$

Mo $K\alpha$ radiation $\lambda = 0.71073$ Å

Acta Crystallographica Section C ISSN 0108-2701 ©1994

POHL, HERBST-IRMER, SCHIMPF AND TIETZE

Monoclinic	Cell parameters from 50	Table 2. Selected geometric parameters (Å, °)			
P21	reflections	C1C10	1.505 (4)	C7C8	1.382 (4)
a = 7.717 (6) Å	$\theta = 10 - 12.5^{\circ}$	C1C9a	1.516 (4)	C8—O3	1.371 (4)
a = 7.717(0) A	$u = 0.555 \text{ mm}^{-1}$	C1C2	1.550 (4)	C8C9	1.385 (4)
D = 7.571(11) A	$\mu = 0.555$ mm	C2N3	1.459 (4)	C9—C9a	1.390 (4)
c = 14.901 (18) A	I = 155 (2) K	N3-C31	1.352 (4)	C10C11	1.310 (5)
$\beta = 94.38 (10)^{\circ}$	Colourless	N3C4	1.455 (4)	C31—O1	1.206 (4)
$V = 845.1 (18) \text{ Å}^3$	$1.20 \times 0.40 \times 0.10 \text{ mm}$	C4C5	1.535 (4)	C31-C32	1.566 (5)
Z = 2	Plates	C5C5a	1.512 (4)	C32CII	1.750 (3)
$D = 1.488 \text{ My m}^{-3}$	Crystal source: n-	C5aC6	1.391 (4)	C_{32} $-C_{13}$	1.770 (3)
$D_x = 1.400$ Mg III	herene/ethanol by slow	CSa-C9a	1.391 (4)	$C_{32} - C_{12}$	1.781 (4)
	incraincretination by slow	$C_{0} - C_{1}$	1.360 (4)	02	1.423(4)
	cooling from 557 K to	C/02	1.570 (4)		1.410 (4)
	room temperature	C10C1C9a	113.8 (2)	C7C8C9	118.9 (3)
		C10-C1-C2	111.2 (2)	C8-C9-C9a	122.0 (3)
Data collection		C9a-C1-C2	113.0(2)	C9 - C9a - C3a	118.7 (2)
	n = 0.0343	N3	114.5 (2)	(9-(9) - (1))	110.3(2) 122.7(2)
Stoe Siemens four-circle	$R_{int} = 0.0243$	C31—N3—C4	127.9 (2)	C_{3a}	126.6 (3)
diffractometer	$\theta_{\rm max} = 22.54^{\circ}$	C_{A} N3 C_{2}	115.0(2)	01 - C31 - N3	123.6 (3)
Profile data from $2\theta/\omega$ scans	$h = -8 \rightarrow 8$	N3	113.4(2)	01 - C31 - C32	117.3 (3)
Absorption correction:	$k = -7 \rightarrow 7$	$C_{3} - C_{5} - C_{4}$	115.9 (2)	N3-C31-C32	119.1 (3)
none	$l = -16 \rightarrow 15$	C6C5aC9a	119.0 (2)	C31-C32-Cl1	109.0 (2)
2209 measured reflections	3 standard reflections	C6C5aC5	117.8 (2)	C31-C32-Cl3	111.0 (2)
2308 measured reflections	5 standard Tenections	C9a-C5a-C5	123.1 (2)	Cl1-C32-Cl3	107.9 (2)
2125 independent reflections	requency: 90 min	C7C6C5a	121.6 (3)	C31-C32-C12	112.1 (2)
2096 observed reflections	intensity variation: none	O2C7C6	123.9 (3)	Cl1-C32-Cl2	107.2 (2)
$[I > 2\sigma(I)]$		O2C7C8	116.5 (3)	Cl3-C32-Cl2	109.6 (2)
		C6C7C8	119.6 (2)	C702C71	116.6 (2)
Refinement		O3C8C7	116.0 (2)	C8-03-C81	116.8 (2)
Acjutement 2		03	125.1 (2)		
Refinement on F^2	$\Delta \rho_{\rm max} = 0.256 \ {\rm e \ A}^{\circ}$				
$R[F^2 > 2\sigma(F^2)] = 0.0328$	$\Delta \rho_{\rm min} = -0.359 \ {\rm e} \ {\rm A}^{-3}$	Data wara coll	lastad with a	learnt-profile me	thod (Clegg.
$wR(F^2) = 0.0858$	Extinction correction: none	Data were con		and enjoytronic	ally H atoms
S = 1.078	Atomic scattering factors	were included in calculated positions and refined using a riding model $[U(H) = 1.2U_{eq}$ for CH and CH ₂ groups, $U(H) = 1.5U_{eq}$			
3 = 1.076	from International Tables				
2123 reflections					
210 parameters	for Crystallography (1992,	for CH ₃ groups	I. The torsion	angles of the two	CH ₃ groups
$w = 1/[\sigma^2(F_o^2) + (0.0667P)^2]$	Vol. C, Tables 4.2.6.8 and	were refined ar	d counted in	the number of par	ameters. The
+ 0.1913 <i>P</i>]	6.1.1.4)	origin along the	nolar avis wa	s fixed with a restrict	aint (Flack &
where $P = (F_{c}^{2} + 2F_{c}^{2})/3$	Absolute configuration:		1000)	5 Intel with a result	
$(\Delta/\sigma)_{\rm m} = 0.001$	Flack (1983).	Schwarzenbach,	, 1988).	C DIEA (Stop & Cia
(max - 0.001)	(//	Data collecti	on and cell r	ennement: <i>DIF</i> 4 (sue a cle,

 $\chi = 0.04$ (6)

-0.6769(2)

-0.6834(2)

-0.7939(2)

-0.8079 (2)

-0.7234(2)

-0.7048 (2)

-0.6327 (2)

-0.5781 (2)

-0.5941(2)

-0.6657(2)

-0.7527 (2)

-0.8000(2)

-0.8235(2)

-0.9182 (2)

-0.96855 (5)

-0.91059 (5)

-0.98992(4)

-0.8012(2)

-0.4609(2)

-0.6557(2)

-0.61015(14)

-0.51025 (12)

-0.77162 (15)

U_{eq} 0.0226 (6)

0.0245 (6)

0.0219 (5)

0.0215 (6)

0.0223 (6)

0.0201 (6)

0.0204 (6)

0.0217 (6)

0.0214 (6)

0.0211 (6)

0.0202 (6)

0.0285 (7)

0.0330(7)

0.0264 (7)

0.0289 (7)

0.0484 (3)

0.0355 (2)

0.0314 (2)

0.0401 (6)

0.0292 (5)

0.0442 (9)

0.0364 (8)

0.0270 (5)

Table 1. Fractional atomic coordinates and equivalent

isotropic displacement parameters (Å²)

 $U_{\text{eq}} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$

-0.5202(4)

-0.4181 (4)

-0.3399(3)

-0.1775 (4)

-0.2148(4)

-0.2489 (4)

-0.1324 (4)

-0.1611 (4)

-0.3108 (4)

-0.4229 (4)

-0.3940 (3)

-0.6541(4)

-0.6837 (4)

-0.4287 (4)

-0.3494 (4)

-0.48867 (13)

-0.12741(11)

-0.34558 (10)

-0.5676(3)

-0.0477 (3)

-0.4970 (5)

0.1223 (4)

-0.3339(3)

x = -0.2831(3)

-0.4592 (3)

-0.5086(3)

-0.4135(3)

-0.2217 (3)

-0.1050 (3)

0.0350 (3)

0.1548 (3)

0.1383 (3)

-0.0049 (3)

-0.1279(3)

-0.2743(4)

-0.1408 (4)

-0.6326 (4)

-0.6938 (3)

-0.85843(11)

-0.78248 (9)

-0.52019 (9)

-0.6998 (3)

0.2929 (2)

0.2640 (4)

0.2933 (4)

0.2667 (2)

Cl

C2

N3

C4 C5

C5a C6 C7

C8

C9

C9a

C10

C11

C31

C32

Cl1

Cl2

Cl3

01

02

C81

C71

03

Data collection and cell refinement: *DIF*4 (Stoe & Cie, 1988*a*). Data reduction: *REDU*4 (Stoe & Cie, 1988*b*). Program(s) used to solve structure: *SHELXS86* (Sheldrick, 1990). Program(s) used to refine structure: *SHELXL93* (Sheldrick, 1993). Molecular graphics: *SHELXTL-Plus* (Sheldrick 1991). Software used to prepare material for publication: *SHELXL93*.

We thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support.

Lists of structure factors, anisotropic displacement parameters and H-atom coordinates have been deposited with the IUCr (Reference: SH1101). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Berger, J. G., Chang, W. K., Clader, J. W., Hou, D., Chipkin, R. E. &
McPhail, A. T. (1989). J. Med. Chem. 32, 1913-1921.
Clegg, W. (1981). Acta Cryst. A37, 22–28.
Eggleston, D. S. (1987). Acta Cryst. C43, 2113-2117.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Flack, H. D. & Schwarzenbach, D. (1988). Acta Cryst. A44, 499-506
Schimpf, R. (1994). PhD thesis, Univ. of Göttingen, Germany.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

- Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1 Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1993). SHELXL93. Program for Crystal Structure Refinement. Univ. of Göttingen, Germany.
- Stoe & Cie (1988a). DIF4. Diffractometer Control Program. Version 6.2. Stoe & Cie, Darmstadt, Germany.
- Stoe & Cie (1988b). REDU4. Data Reduction Program. Version 6.2. Stoe & Cie, Darmstadt, Germany.
- Tietze, L. F. & Schimpf, R. (1994). Angew. Chem. 106, 1138–1141; Angew. Chem. Int. Ed. Engl. 33, 1089–1091.

Acta Cryst. (1994). C50, 1980-1981

$(Z)-(-)-(R)-\beta$ -Styryl *p*-Tolyl Sulfoxide

JEAN-PAUL DECLERCQ AND JANINE FENEAU-DUPONT

Université Catholique de Louvain, Laboratoire de Chimie Physique et de Cristallographie, 1 Place Louis Pasteur, B 1348 Louvain-la-Neuve, Belgium

CHANTAL LOUIS AND CLAUDE HOOTELÉ

Université Libre de Bruxelles, Service de Chimie Organique, Faculté des Sciences, B 1050 Bruxelles, Belgium

(Received 4 January 1994; accepted 21 June 1994)

Abstract

The crystal structure determination of (Z)-(-)-(R)- β styryl *p*-tolyl sulfoxide, C₁₅H₁₄OS, confirms its absolute configuration and establishes that the slightly twisted olefinic bond is not antiperiplanar to the S—O bond. It also provides a molecular basis for the theoretical study of cycloadditions between nitrones and vinylic sulfoxides.

Comment

The 1,3-dipolar cycloaddition of nitrones with alkenes constitutes a powerful method for the synthesis of alkaloids and related bases (Tufariello, 1984). In order to perform a theoretical study concerning the regiochemistry of cycloadditions between nitrones and vinylic sulfoxides, the molecular parameters of this latter type of compound were required. A search through the Cambridge Structural Database, version 5.06 (Allen *et al.*, 1991), revealed several X-ray crystallographic studies on sulfoxides (Hua, Badejo, McCann & Takusagawa, 1987; Swindell, Blase, Eggleston & Krause, 1990), but with the exception of one paper (Koizumi, Arai, Takayama, Kuriyama & Shiro, 1987), no information was found on (Z)-sulfinylethene derivatives. The title compound, (I), was synthesized by Andersen's method (House *et al.*, 1987); m.p. 330–331 K, $[\alpha]_{D22} = -738^{\circ}$ (CHCl₃; c = 1.0) {literature: $[\alpha]_{D22} = -736^{\circ}$ (CHCl₃; c = 1.0)}, NMR and MS spectra are all in agreement with the published data (Mikolajczyk, Midura, Grzejszczak, Zatorski & Chefczynska, 1978).

The complete structure was determined by a singlecrystal X-ray diffraction study. The absolute configuration established by the X-ray analysis [Flack (1983) parameter = -0.02(2)] confirms the previously determined stereochemistry (Mikolajczyk, Midura, Grzejszczak, Zatorski & Chefczynska, 1978); the S atom has an R configuration. The C1=C2 bond is slightly twisted owing to steric hindrance; the dihedral angle defined by C12---C1=C2-S3 is $11.9 (4)^{\circ}$. Noteworthy is the conformation of the vinyl sulfoxide moiety, where the S3-O4 and C1=C2 bonds are not anti coplanar (s-trans), as observed in benzyl (Z)-3-p-tolylsulfinylacrylate (Koizumi, Arai, Takayama, Kuriyama & Shiro, 1987), but have a dihedral angle of $121.9(3)^\circ$, compared to 157° in the acrylate compound. The S-atom lone pair, therefore, lies more or less in the plane of the alkene; this observation corroborates the conformation assumed by Kimmelma (1993) for (Z)-vinylic sulfoxides on the basis of ab initio calculations. Indeed, in (Z)-vinylic sulfoxides steric strain between the sulfoxide group and the β -substituent precludes the s-cis conformation which would allow conjugation between the S-O and the olefinic bonds.

Fig. 1. View of the molecule with the atom-numbering scheme.

Experimental

Crystal data $C_{15}H_{14}OS$ $M_r = 242.32$

Cu $K\alpha$ radiation $\lambda = 1.54178$ Å